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Variance-based interrater agreement indices in the rWG family are often interpreted using rules-of-
thumb derived for reliabilities (e.g., ≥ .70 = acceptable). Monte Carlo results suggest that far more 
stringent standards are needed, especially for maximum-variance rWG, as values > .70 can 
routinely be obtained from totally random ratings.  

 
 
 Researchers have developed a range of indices sensitive to 
pattern-based ratings similarity (e.g., average interrater r) and/or 
level-based agreement (e.g., see Dunlap, Burke, & Smith-Crowe,  
2003, Mitchell, 1979; Shrout & Fleiss, 1979; Tinsley & Weiss, 
1975). The popular rWG family of indices takes the latter 
approach, evolving from the original (e.g., James, Demaree, & 
Wolf, 1984) to include several derivatives (e.g., Brown, 2002; 
Lindell, 2001; Lindell & Brandt, 1997, 1999; Lindell, Brandt, & 
Whitney, 1999); all quantify agreement as a function of observed 
cross-rater variance relative to an error-term defining an 
unacceptable baseline of disagreement.  
 Original rWG (denoted as rWGu) uses a uniform distribution on 
A points as the error variance: 
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Here, rWGu = 1 denotes perfect agreement, whereas 0 reflects a 
white-noise-style absence of agreement; however, because one 
can find situations in which systematic disagreement (e.g., half of 
raters rate high, half low) exceeds sEU

2, negative rWGus can result. 
Although not a flaw in one sense (i.e., it simply indicates that 
disagreement exceeds the error baseline), because James et al. 
(1984) and others initially viewed rWG as index of reliability, 
negative values were considered “improper” (e.g., see Lindell et 
al., 1999, pp. 131-132) and efforts were made to make rWG’s 
range more closely match that of the classical test theory (CTT) 
reliability coefficient (i.e., 0-1).  

The derivative index we denote as rWGmax (e.g., Lindell & 
Brandt, 1997) was one result; rWGmax increased the error term 
(relative to rWGu) via the use of a maximum-variance estimate, 
sMV

2 (i.e., the variance in a bimodal-extreme distribution in which 
half of the raters provide the lowest- and highest-possible ratings, 
which is clearly not an unsystematic type of disagreement): 

 
sMV

2 = .5(H2 + L2) – [.5(H + L)]2  (3) 
 

(H = highest, L = lowest). Brown’s awg (2002) is similar, using 
conditional maximum-variance to reflect the fact that as the mean 
departs from the midpoint, the maximum variance is reduced: 
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( xM = mean, k = raters). Conceptually, aWG is similar to rWGmax, 
but with a situationally-sensitive error term; unlike original rWGu, 
however, both express agreement relative to a baseline of worst-
imaginable disagreement. Multiple-item rWGs were also 
developed (e.g., see Lindell, 2001).  
 
Interpreting the Magnitude of rWG 
 
 Controversy surrounds the use of rater agreement indices 
(e.g., see Cohen, Doveh, & Eick, 2001; Dunlap et al, 2003; Klein, 
Conn, Smith, & Sorra, 2001; Kozlowski & Hattrup, 1992; 
Murphy & DeShon, 2000a, 2000b; Schmidt & Hunter, 1989; 
Schmidt, Viswesvaran, & Ones, 2000); we focused on the issue of 
interpreting the magnitude of rWG. Two main strategies can be 
identified: (a) rules-of-thumb designed to identify minimum-
acceptable agreement (e.g., using cutoffs advanced for 
reliabilities); and (b) statistical significance tests (e.g., Dunlap et 
al.,  2003). 
 Rules-of-thumb based on CTT. Given Equations 1-4 and prior 
research (e.g., see Lindell, 2001, pp. 93-94), it is indisputable that 
the choice of error term strongly influences the scale or  metric on 
which rWG is expressed, and that rWGs (e.g., rWGmax and aWG ) that 
use larger errors will be numerically larger than rWGu using sEU

2. It 
is therefore puzzling why many researchers and practitioners 
continue to rely on arbitrary rules-of-thumb to interpret rWG, 
especially the popular rule-of-thumb stating that rWG ≥ .70 denotes 
acceptable agreement. Although not peculiar to rWG (e.g., cross-
rater rs in the .70’s and up were deemed “substantial correlations” 
by Fleishman & Mumford, 1991, p. 543), the practice of viewing 
rWG in the .70’s and higher as representing acceptable 
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convergence is widespread. For example, Dirks (2000, p. 1007) 
noted that “because it is necessary to determine whether 
aggregation is empirically justifiable, …. I computed Rwg … 
which was an acceptable .87;” Zohar (2000, p. 593) cited rWG 
values in the.70’s and mid .80’s as proof that judgments “were 
sufficiently homogeneous for within-group aggregation;” 
similarly, Judge and Bono (2000, p. 757) observed that “the mean 
rwg statistic was .74. This relatively high level of interrater 
agreement appeared sufficient to justify aggregation” (emphasis 
added).  
 In addition to implicit references, examples of explicit use of 
the .70 cutoff are not difficult to identify; for example, George 
(1990, p. 112) explicated its roots in CTT reliability theory: 
 

“Thus, to determine if it is meaningful to speak of an 
affective tone of the group, it is necessary to ascertain if 
consistency of affect exists within groups. To this end, [rWG] 
was used. This interrater reliability coefficient can be 
interpreted similarly to other types of reliability coefficients. 
For example, James (personal communication, February 4, 
1987) suggests that a value of .7 or above is necessary to 
demonstrate consistency within a group; this is the same 
figure Nunnally (1978) provided as an acceptable level for an 
internal consistency reliability coefficient for this type of 
research. Based on the James et al. procedure, the estimates 
of within-group interrater reliability … generally show a high 
level of agreement. The average interrater reliability was .87; 
more specifically, (a) 50 of the 52 estimates … fall above the 
.70 ballpark figure for a “good” amount of agreement (L. R. 
James, personal communication, February 4, 1987)” 
(emphasis added). 

 
Recently, Totterdell (2000) relied on the .70 rule, citing George 
(1990) as justification: 
 

“To test whether the players' moods were sufficiently 
consistent within teams to justify the use of aggregate scores 
…within-group interrater agreement (rwg) estimates were .63 
and .79 for individual and team happy mood, respectively. 
Values on this estimate must normally be greater than .70 to 
demonstrate sufficient consistency (see George, 1990), which 
implies that only the measure for team happy mood could be 
aggregated.” (emphasis added). 
 

 The justification for the rWG ≥ .70 rule rests largely on the 
argument that (a) some researchers (e.g., James et al., 1984) 
viewed rater agreement as being similar to reliability, (b) others 
claimed that reliabilities as low as .70 are useful (e.g., Nunnally, 
1978), therefore (c) rWG ≥ .70 implies acceptable “interrater 
reliability” and consensus. We question the use of any arbitrary 
cutoff. First, it has been argued (e.g., Kozlowski & Hattrup, 1992; 
Lindell et al., 1999, pp. 131-132) on theoretical grounds that rWG 
should not be viewed as an index of reliability; likewise for 
interrater rs (e.g., Crocker & Algina, 1986; Murphy & DeShon, 
2000a; Shrout & Fleiss, 1979). Second, the fact that rWGs using 
different error terms lie on different metrics (e.g., Lindell, 2001, 
pp. 93-94) implies that no arbitrary cutoff could possibly be valid 
for all rWGs; for example, even if the .70 cutoff is correct for 
original rWGu, it would be too lenient using an index (e.g., rWGmax) 
that yields larger values from identical ratings. Third, there is little 
empirical basis for a .70 cutoff, and few studies (Kozlowski & 

Hattrup, 1992, being an exception) have attempted to determine 
how various rWG values equate with “real world” levels of 
interrater agreement. 
 Statistical tests. An alternative strategy for interpreting rWG 
(e.g., Dunlap et al, 2003; Lindell et al., 1999) involves statistical 
significance tests. Dunlap et al. (2003) critiqued the chi-square 
test advanced by Lindell et al., in which “the null hypothesis 
tested by chi-square is that there is no agreement among raters in 
their rating of an item above and beyond what would be expected 
by chance or random responding.” Dunlap et al. preferred an 
alternative test that evaluates “the null hypothesis that the actual 
distribution of responding is rectangular” (p. 356). We agree with 
Dunlap et al. (2003) that statistical tests of rWG are useful if one’s 
objective is to determine if any nonzero convergence exists. 
However, the logic of null hypothesis testing poses limitations on 
its usefulness, given that such statistics test whether zero 
agreement exists; although useful, this reflects a qualitatively 
different goal from determining if “reasonable consensus exists 
for a group to aggregate individual level data to the group level of 
analysis” (Dunlap et al., p. 357). Evidence of the former offers 
necessary, but certainly not sufficient, evidence of the latter.  
 
The Present Study 
 
 To interpret rWG, we agree with Kozlowski and Hattrup 
(1992) that “what is needed is a systematic investigation of the 
various indexes under varying levels of agreement … to allow 
researchers to … select methods appropriate for their situation” 
(p. 166). That is, to supplement statistical tests, researchers need a 
method for comparing obtained rWGs against rWGs computed in 
datasets having known “benchmark” levels of agreement or data 
quality. Toward that end, we used Monte Carlo methods to 
generate item ratings from simulated raters judging a common 
target that had known true quality (i.e., a given proportion of 
“true” variance based on the actual score of the target, and a given 
proportion of random error); we then benchmarked rWG values 
from different equations, paying particular attention to the level of 
random error present in data producing rWG =.70. As Kozlowski 
and Hattrup (1992) and Lindell (2001) noted, the answer to the 
question “how large an rWG is large enough?” is contingent on the 
rWG error term, as well as one’s context and purpose (including 
factors such as number of rating points, number of raters, 
distribution shape). Obviously, a single study – even a massive 
factorial – cannot capture all possible situations in which 
benchmarks are needed; we therefore focused on finding a means 
to allow researchers to benchmark rWG in any specific situation, 
with any desired agreement goal.  
 This study had two objectives. First, we sought to illustrate 
how rWG benchmarking can be employed in a specific research 
situation, choosing parameters to model a rating process of 
substantive interest; second, to address the .70 rule-of-thumb, we 
chose parameters describing more generic, generalizable rating 
situations. In both cases, ratings quality was varied to range from 
what we viewed as a realistic bad-agreement baseline (i.e., 
random ratings sampled from a realistic population distribution) 
through perfect (i.e., each rater produced the target’s known true 
score). Although contrived situations in which raters produce even 
more error variance exist (e.g., Equation 3), we felt this 
represented an understandable, yet unacceptable baseline (i.e., in 
what situation would random Normal or uniform ratings be 
deemed acceptable?). 
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 For the application-specific benchmarks, we focused on the 
Occupational Information Network (O*NET; e.g., Peterson, 
Mumford, Borman, Jeanneret, Fleishman, 1999; Peterson, 
Mumford, Borman, Jeanneret, Fleishman, Levin, Campion, 
Mayfield, Morgeson, Pearlman, Gowing, Lancaster, Silver, & 
Dye, 2001), the replacement for the Dictionary of Occupational 
Titles (DOT). As with earlier research on the Fleishman ability-
trait survey (which, like the O*NET, uses single-item holistic 
scales; e.g., Fleishman & Reilly, 1992), the research reported by 
Peterson et al. (1999, 2001) in support of the O*NET relies 
heavily on rater-convergence statistics to justify inferences 
regarding data quality. To evaluate the rWGs produced by the 
O*NET raters, our Monte Carlo process closely paralleled the 
O*NET ratings (including its highly skewed distributions). For 
the latter objective, based on prior Monte Carlo research (e.g., 
Blunt, 1986; Harvey & Hayes, 1986) we hypothesized that .70 
values for rWG (especially using the maximum-variance error 
term) could be obtained even when ratings contained substantial 
amounts of error; this question was addressed using more generic 
rating situation parameters. 
 

Method 
Real-Data Sample 
 
 O*NET rWG results were obtained from the rater-level 
judgments used to produce the national O*NET database; teams 
of 4-6 analysts rated 1,180 “occupational units” (OUs). We used 
the Level ratings (0-7 scale) for each of the 42 O*NET scales in 
the General Work Activity (GWA) survey (see Figure 1). Using 
Equations 1-4, rWGu, rWGmax, and aWG were computed for each 
item in each OU, then aggregated by OU (corrected variances in 
numerators were used). Because the GWA survey posits that each 
scale describes independent content (Peterson et al., 1999), we did 
not use more complicated methods of aggregation (e.g., see 
Lindell, 2001) that assume a common underlying construct. That 
is, although the question of how the multiple-item generalizations 
of rWG (e.g., Lindell, 2001) perform is an interesting one that 
should be addressed in subsequent research, we focused 
exclusively on benchmarking the single-item rWG indices. 
Pairwise interrater rs were also computed in each OU, and 
aggregated by OU by computing the median. See Hubbard, 
McCloy, Campbell, Nottingham, Lewis, Rivkin, & Levine (2000) 
and Levine, Nottingham, Paige, & Lewis (2000) for further details 
regarding O*NET data collection. 
 
Monte Carlo Procedure 
 
 The Monte Carlo analyses examined the values produced by 
each rWG index in a range of benchmark datasets having known 
true properties with respect to ratings quality and rater behavior. 
Rather than manipulating rater covariance directly, we 
manipulated data quality by specifying a true-score target for each 
item/OU combination, then adding varying amounts of random 
distortion to each rater/item/OU combination using a CTT-like 
functional relation: 
 

 ( ) ijsjsijs eqqTX −+= 1    (5) 
 
where T = true score for job, X = observed rating, q = quality 
weight (0-1), and subscripts i = rater, j = job, and s = scale. As in 
CTT, the OU’s true scores were independent of error (for each 

OU, the same randomly-selected true profile was used for all 
raters and replications), and error was random and rater-scale-OU 
specific. To produce data of known true quality (defined as the 
relative weighting of true versus error in Equation 5) we varied q 
(e.g., q = 0.8 for 80% true, 20% error); to keep T and e on a 
comparable metric (i.e., to maintain the desired proportions, given 
that we modeled raw scores), the same random generators were 
used for both T and e.  
 Although the theoretical parallels between Equation 5 and 
CTT are obvious, we termed our independent variable rating 
quality rather than reliability to avoid the unnecessary (and in our 
view, inapplicable; e.g., Crocker & Algina, 1986; Murphy & 
DeShon, 2000a) baggage that the use of the latter term engenders, 
which in any event is irrelevant to the main task at hand – i.e., 
benchmarking rWG in data having known true qualities (not known 
“interrater reliability”). Obviously, functions other than Equation 
5 could have been used; we chose it because it offers an easily 
comprehensible way to express the amount of undesirable 
variance in a rating condition (the fact that Equation 5 also 
describes the way in which CTT postulates that raters make their 
ratings is not essential to our main objective). Indeed, given that 
our data-quality manipulation defines the degree to which each 
rater’s item ratings are distorted from the known-true correct 
value for the target, it is arguably more similar to the notion of 
rating accuracy (defined as the convergence with a known-true 
standard or criterion) than reliability. In any event, the main issue 
concerned the levels of rWG produced across the range of the 
quality variable, regardless of whether one chooses to view it as 
“reliability,” “accuracy,” or simply freedom from error. 
 For the O*NET analyses, we used rater groups of N = 5, with 
42 integer (0-7) scales; q ranged from 0 to 1 by 0.05, with 200 
simulated occupations and 200 replications of each. Given the 
non-Normal O*NET distributions, custom random-number 
generators were used for T and e to sample integers from the 
actual population distributions (i.e., generating uniform 0-1 
values, then assigning the rating corresponding to that location in 
the cumulative distribution function for each item). For the 
generic analyses, we modeled 20 raters judging 20 7-point (0-6) 
scales with 50 different true profiles and 200 replications of each, 
varying the type of random process: (a) random real-valued T and 
e were sampled from a Normal(3, 1.3) population (to avoid skew), 
ranged-checked, combined via Equation 5, then rounded to 
integers; and (b) integer-valued T and e were sampled from a 
rectangular distribution, and similarly processed. A uniform 
distribution was examined given the parallels to the “bad 
baseline” error in rWGu; the Normal distribution was examined 
given our view that it may represent a more realistic and easily 
generalizable rating situation (i.e., arguably far more traits that 
would be the subject of a Likert-type rating process exhibit 
population distributions that are Normal, as opposed to 
rectangular, in practice).   
 

Results and Discussion 
 
 Table 1 presents descriptive statistics for the O*NET raters, 
Figure 2 depicts real-data rWG and aWG distributions, and Figure 3 
shows the distribution of interrater rs. The skewed results in Table 
1 reinforce the need to use custom random generators to draw 
conclusions regarding the O*NET database. As expected from 
Equations 1-4, Figure 2 shows that the choice of error term 
strongly affects rWG: median (2.5th to 97.5th percentile) rWGu = .83 
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(.60-.92), aWG = .89 (.81-.94), and rWGmax = .93 (83.-.97). Figure 2 
also indicates that aWG provides somewhat different results than 
rWGu and rWGmax (which are simply linear transformations of each 
other). Although the rater profile rs in Figure 3 are quite variable, 
and many are quite low (median = .63), if the .70 rule-of-thumb 
were applied (and valid) the rWG results could be cited as evidence 
that O*NET raters exhibited strong convergence (e.g., all aWG and 
rWGmax > .70, with approximately half > .90).  
 However, the Monte Carlo benchmarks (see Figure 4) 
tailored to match the O*NET rating process lead to a very 
different bottom-line conclusion: namely, that the .70 cutoff is far 
too lenient for these rWG indices. That is, (a) even in conditions of 
zero true data quality (i.e., q = 0: zero true score, totally random 
ratings sampled from the population distribution for each O*NET 
item), average rWGs using maximum-variance error terms fall in 
the low .80’s (i.e., a range that is widely viewed in the literature as 
representing good convergence); (b) for original rWGu, on average 
the .70 rule is satisfied even with 80% random item variance; (c) 
the average rWGs produced by the actual O*NET raters correspond 
with disturbingly low Monte Carlo benchmarks (e.g., real-rater 
rWGmax and rWGu correspond with almost 60% random variance, 
with median aWG at 70% random); and (d) the median O*NET 
interrater r corresponds with benchmark random percentages of 
approximately 50%. Thus, in situations like those seen in the 
O*NET GWA survey (i.e., 8-point scale, small rater groups, 
skewed items), the Figure 4 results indicate that the .70 rule-of-
thumb for rWG provides a highly exaggerated view of data quality. 
Although the amount of random error that one might consider to 
be tolerable in a given situation is open to debate, it is difficult to 
imagine situations in which ratings containing 50-100% random 
noise would be deemed acceptable. Indeed, the fact that a rWG = 
.90 value of corresponds to over 70% random error for rWGmax 
and nearly 50% random error for rWGu clearly indicates the fallacy 
of attempts (e.g., George, 1990) to equate the metric of rWG with 
the CTT reliability coefficient. 
 Although some may consider these results to be paradoxical 
(especially the q = 0 conditions), they can easily be explained via 
inspection of Equations 1-4 and Table 1. That is, even ratings 
sampled randomly from these skewed distributions will show 
much less variance than a uniform 0-8 or bimodal-extremes 0/8 
random distribution, a fact that ensures sizable rWGs even with no 
true agreement. Nonzero cross-rater rs can likewise be explained 
due to over-fitting in small samples (i.e., the N for these rs is the 
number of items), plus the fact that random values sampled from a 
population profile having different means across the profile items 
will tend to parallel the population pattern of high/low item-mean 
values, further ensuring positive interrater rs. 
 The generic benchmarks (see Figure 5 for uniform, Figure 6 
for Normal) further support the conclusion that the .70 rule-of-
thumb represents a far-too-lenient standard for interpreting rWG. 
That is, the Figure 5 results are based on the uniform-random 
concept of disagreement assumed by rWGu; as a validity check, we 
see that rWGu does indeed approximate 0 for q = 0 (it is actually 
slightly negative due to the sample-versus-population variance 
issue; see Lindell et al., 1999, p. 133). However, even in these 
arguably somewhat unrealistic conditions (i.e., we think random 
raters would be more likely to look Normal than uniform), 
rWGu=.70 is obtained with over 50% random variance, and aWG 
and rWGmax achieve the .70 cutoff with 80% random variance. 
Using the Normal distribution that we find more realistic, the .70 
rule is met with 85% random variance for rWGu and 100% random 

for aWG and rWGmax. As with the O*NET results, the .70 rule leads 
to totally misleading and grossly exaggerated data-quality 
inferences for all rWGs. 
 Interestingly, for all of the Monte Carlo conditions modeled 
above (including the very small samples of raters used by the 
O*NET), the amount of sampling error seen for the various rWG 
indices across replications (i.e., the dashed lines around the 
median values) is often relatively modest (especially for the 
maximum-variance indices, and the more desirable ranges of 
rating quality), although clearly the choice of a uniform versus 
non-uniform population distribution exerts appreciable impact 
(i.e., Figures 4 and 6 versus 5). Given the general similarity of 
results for maximum-variance rWG indices obtained in the 
radically different rating situations modeled in Figures 4 and 6, 
unless one has reason to assume a uniform distribution these 
results may be generalizable to a wide range of rating situations. 
Specifically, in both cases the Monte Carlo benchmarks indicate 
that for maximum-variance rWG, values less than the low-to-mid 
.90’s correspond to very questionable rater performance and high 
levels of random error. Although we do not recommend that 
researchers adopt a .90 rule-of-thumb to replace the .70 cutoff 
(i.e., in some situations even values in the low .90’s may reflect 
unacceptable disagreement), these results suggest that rWGmax 
values in the low .90’s and below should be given close scrutiny. 
Conclusions 
 Our findings show that the widely-used .70 rule-of-thumb for 
rWG produces a grossly inflated view of ratings quality across a 
wide range of rating situations. We conclude that it is time to 
abandon the .70 rule, and instead judge rWG using benchmarks that 
are appropriate to each rating situation; our generic benchmarks 
may be useful in many situations, and our Monte Carlo method 
can easily be adapted to produce benchmarks customized for any 
desired rating situation. 
 Regarding O*NET, given that the rWGs from O*NET raters 
match benchmarks that reflect high levels of random rating, we 
view our findings as raising significant questions regarding the 
quality of the O*NET database. Because our Monte Carlo 
parameters were modeled directly on O*NET, there can be little 
question regarding realism or applicability. Given that much of 
the data cited in support of the holistic scales used in O*NET 
(e.g., Fleishman & Mumford, 1991; Peterson et al., 1999, 2001) 
involves rater convergence, we conclude that significant 
additional research is necessary before researchers can conclude 
confidently – as did Peterson et al. (2001) – that “the O*NET 
provides a highly usable and inexpensive methodology for 
analyzing jobs … [that] will have a great impact on research and 
practice. It is certain to provide many years of good service to the 
public, just as the DOT did” (p. 487, emphasis added).  
 In short, when median rWGs for the raters who produced the 
O*NET database correspond to benchmarks having 60-70% 
random variance (indeed, half of the rated occupations involve 
higher levels of error), the fundamental quality of this database is 
clearly called into question. Although it remains possible that 
averaged ratings based on profiles containing high levels of 
random noise may be found to be useful in practice and lead to 
valid occupational decisions, this is ultimately an empirical 
question that must be answered via additional research. 
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Table 1. Summary Statistics for Actual O*NET Ratings 
 

GWA Mean SD 0 1 2 3 4 5 6 7 
1  3.326  1.500 0.4075 6.1736 37.6151 59.1245 76.8302 88.8302 98.3698 100.000 
2  3.012  1.462 3.1698 12.8302 41.7208 63.8189 83.1245 94.7925 99.3057 100.000 
3  2.833  1.450 7.2000 14.9736 42.3547 68.5132 87.6075 96.6792 99.3509 100.000 
4  2.235  1.441 16.7094 28.4679 56.7849 80.4528 95.2906 98.8679 99.8491 100.000 
5  2.123  1.240 11.0792 26.0528 66.6717 89.5698 95.4566 98.9132 99.8792 100.000 
6  2.502  1.442 9.6302 21.6755 54.3547 76.1962 90.3245 97.8415 99.7434 100.000 
7  2.476  1.338 8.0906 20.4679 53.1774 79.8340 92.3170 98.6264 99.8038 100.000 
8  2.418  1.644 13.1170 28.9057 58.4755 76.4226 87.3962 94.4755 99.3509 100.000 
9  2.517  1.676 11.5019 27.2302 57.5245 73.3736 85.6906 94.0981 98.8075 100.000 

10  2.515  1.448 6.4453 23.9245 56.2717 76.1962 88.2717 97.6000 99.7283 100.000 
11  1.916  1.579 21.6453 43.8189 69.6302 84.5585 92.0604 97.1321 99.4566 100.000 
12  2.675  1.621 7.1547 25.1321 51.2755 71.3509 84.1962 94.1585 99.1698 100.000 
13  1.283  1.484 44.5585 62.6264 77.9623 91.4717 96.3170 98.8830 99.8340 100.000 
14  1.387  1.507 40.8000 58.0377 79.0642 89.0113 95.4264 99.0340 99.9094 100.000 
15  2.468  1.474 7.1094 26.3245 58.0075 74.6717 91.0943 96.3623 99.5774 100.000 
16  2.725  1.436 5.5094 14.8528 50.0679 74.2943 88.6943 94.9585 99.0340 100.000 
17  3.254  1.355 2.4906 7.5774 31.4415 55.0340 83.4566 95.2755 99.2453 100.000 
18  2.190  1.505 19.2784 31.2953 56.7784 80.5254 95.2144 98.2337 99.6530 100.000 
19  1.209  1.401 45.2679 59.9396 85.2226 93.7660 96.4679 98.6113 99.7585 100.000 
20  0.708  1.267 69.6755 76.2264 90.8377 95.8792 97.9623 98.9132 99.6830 100.000 
21  1.108  1.494 53.8868 65.9472 83.8340 91.3208 95.7887 98.6113 99.7585 100.000 
22  2.258  1.367 13.9623 24.8302 57.7660 84.8604 94.0528 98.7925 99.8642 100.000 
23  1.402  1.551 42.8830 56.9208 77.8264 87.9698 95.8038 98.6113 99.7736 100.000 
24  1.016  1.338 51.3660 67.9698 89.2679 94.0830 97.4038 98.5057 99.7736 100.000 
25  2.222  1.444 14.6113 30.3547 60.0755 80.2264 93.7509 98.7925 99.9396 100.000 
26  1.792  1.591 29.1623 46.3849 68.8453 84.8604 93.5849 98.0226 99.8642 100.000 
27  2.758  1.635 7.3962 21.3434 50.8528 68.9509 83.6377 92.6642 99.3509 100.000 
28  2.268  1.857 25.7208 38.7472 55.2604 72.8151 86.2792 94.9585 99.3358 100.000 
29  2.377  1.530 15.3962 29.4340 54.6264 69.4642 94.4755 98.9585 99.9094 100.000 
30  1.528  1.551 35.1698 52.7698 79.6075 88.6038 93.2981 97.9472 99.7434 100.000 
31  1.251  1.455 44.7245 62.0226 81.9623 90.8226 96.3623 99.1094 99.8340 100.000 
32  1.342  1.512 41.3887 59.8642 81.8566 89.6604 94.7774 98.4604 99.7736 100.000 
33  1.411  1.706 48.3170 60.7396 73.7962 85.0717 92.6491 98.5962 99.7132 100.000 
34  1.673  1.537 31.0189 47.7887 74.3245 87.4415 93.7208 98.5057 99.8792 100.000 
35  0.968  1.320 54.3094 70.6113 87.2151 94.0226 97.5849 99.4264 99.9547 100.000 
36  1.370  1.505 41.1170 57.4189 80.3774 91.0038 94.8377 98.3849 99.8189 100.000 
37  1.037  1.547 60.0151 71.4264 81.6151 88.3170 95.6981 99.2604 99.9547 100.000 
38  1.249  1.460 44.5283 61.6755 83.4264 91.0340 95.6226 98.8679 99.8792 100.000 
39  1.823  1.830 35.3660 50.8075 67.1698 80.0755 88.6792 96.0302 99.5472 100.000 
40  1.647  1.359 25.9170 44.2717 78.8377 91.2000 96.1358 99.0340 99.8189 100.000 
41  0.570  1.219 75.9396 84.4830 90.9887 94.0528 97.9170 99.6075 99.9245 100.000 
42  1.519  1.582 37.3283 55.0340 76.8906 87.0189 93.3736 98.6113 99.8340 100.000 

 
Note. Mean and SD are from N = 6,625 ratings from the national O*NET database; columns 0-7 report the 
cumulative percentages of raters in this population for each of the 0-7 rating points on the given O*NET scale.  
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Figure Captions 
 

Figure 1. Sample O*NET rating scale from the GWA survey. A zero rating for the Level scale is given if the 
rater judges the job to be a ‘1’ on the Importance scale, creating an effective 0-7 Level scale. 

Figure 2. Scatterplot of distributions of aWG (vertical axis) by rWGu (horizontal) computed from 6,625 O*NET 
ratings (1,180 occupations rated by teams of 4-6 raters on 42 GWA items); each plot represents the average (i.e., 
aggregated across items) for each occupation. Reference lines are drawn at the 2.5th, 16th, 50th, 84th, and 97.5th 
percentiles. 

Figure 3. Frequency distribution of median interrater r values (i.e., median across all pairs of raters in each 
rater group for each occupation) for actual O*NET raters.  

Figure 4. Values for interrater agreement indices (vertical axis) obtained from analysis of simulated O*NET 
raters (N = 5 per group) having known percentages of true-score variance (horizontal axis); R = results for median 
interrater r between profiles for each rater group-occupation pairing (orange lines), C = conventional uniform-
variance rWG (blue), M = maximum-variance rWGmax (red), A = aWG (green). Solid lines represent median values for 
each level of data quality (0 = zero true variance, 1 = 100% true), dashed lines around median represent 68 percent 
(i.e., 16th and 84th percentiles) and 95 percent bands (2.5th and 97.5th percentiles).  

Figure 5. Values for interrater agreement indices (vertical axis) obtained from analysis of generic 7-point 
scale using uniform distributions, 20 items, 20 raters, 50 jobs, 200 replications. 

Figure 6. Values for interrater agreement indices obtained from analysis of generic 7-point scale using 
Normal distribution (M=3.0, SD=1.3), 20 items, 20 raters, 50 jobs, 200 replications. 
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